

Whiplash

GMTTB Jahrestageung 20.-21.April 2012, München

Dipl.-Ing. Volker Sandner
ADAC Technik Zentrum
Landsberg

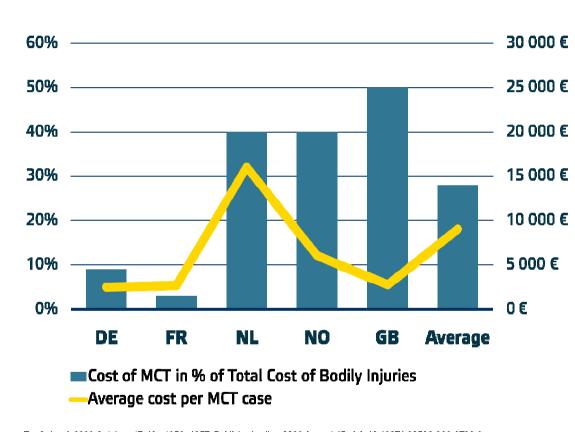
© www.adac.de

Inhalt

Testverfahren

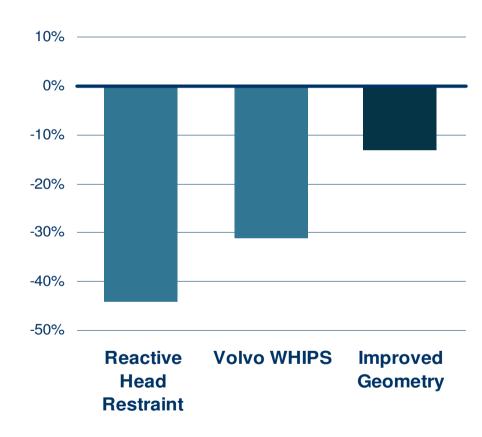
Einleitung

Testverfahren


Ergebnisse aus den Tests

Rücksitzpassagiere

Unfallforschung und Zukunftsausblick



Hohe Kostensituation

Eur Spine J. 2008 October: 17(10): 1350–1357, Published online 2008 August 15, doi: 10.1007/s00586-008-0732-8.

Risikominimierung durch gute Sitze

Farmer, C.M., Wells, J.K. and Lund, A.K. (2003). "Effects of Head Restraint and Seat Redesign on Neck Injury Risk in Rear-End Crashes." Traffic Injury Prevention 4 (2):83-90.

Europäisches Whiplashtestprogramm

- erstes Treffen 2002
- Intention: Entwicklung eines Test und Bewertungsprogrammes für PKW Sitze
- bis 2005 Bewertungskriterien entwickelt
- 2006 Entwicklung eines Tests
- bis 2006 Punk
- bis 2007 Validierungsversuche in den
- ab November 2008 Testdurchführung
- 2009 Einführung des Tests in die Sternebewertung
- 2014 Einführung der Bewertung für die Rücksitzbank geplant

Inhalt

Testverfahren

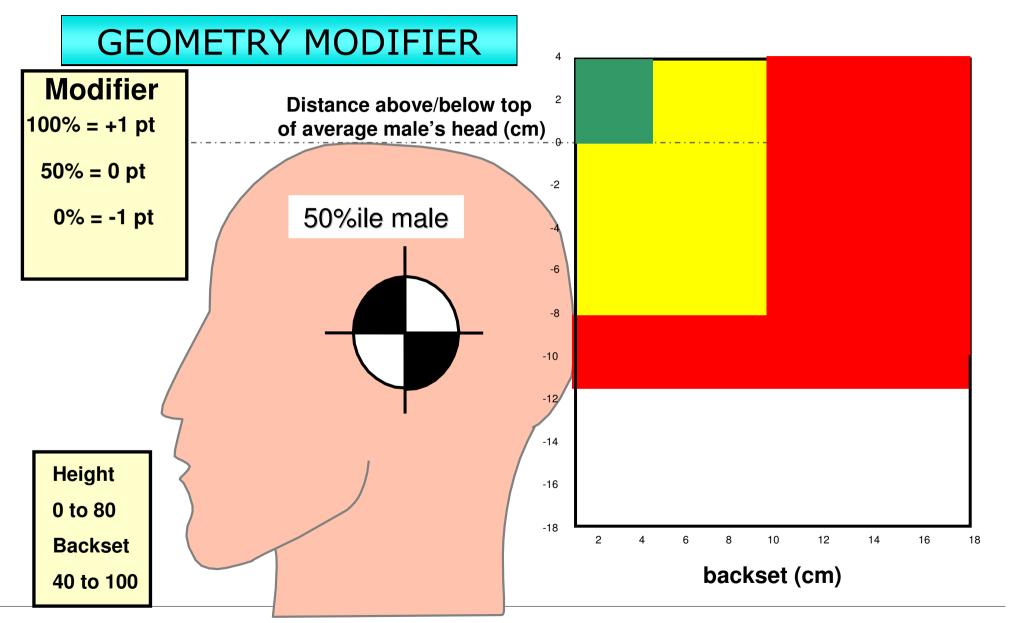
Einleitung

Testverfahren

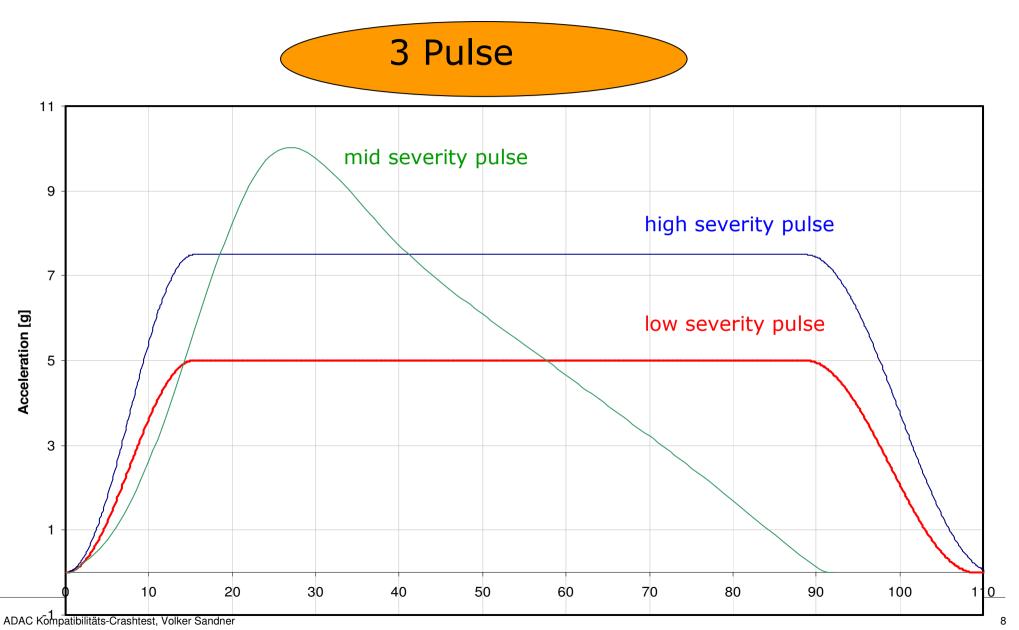
Ergebnisse aus den Tests

Rücksitzpassagiere

Unfallforschung und Zukunftsausblick


Statische Tests

- Geometrievermessung
- Sitzstrukturbewertung


Dynamische Tests

- 16km/h geringe Verzögerung, ansprechen der Systeme wird abgetestet
- 16km/h hohe Verzögerung, Unfallsimulation mit der häufigsten Unfallschwere, v impact ca. 35km/h
- 24km/h hohe Verzögerung, Maximalbelastung des Sitzsystems

IIHS	T1 acceleration (1. thorax vertebrae)	0.5 Pts
	Headrest contact time	
	Fx (upper neckforce x-axis)	0.5 Pts
	Fz (upper neckforcez-axis)	0.5 Pts

SRA	NIC (Neck injury criterium)	0.5 Pts
	Nkm (neckcriterium acc. Muser)	0.5 Pts
	Rebound velocity	0.5 Pts

Euro NCAP=>

3 Punkte pro Puls

Basis der Bewertungsgrenzen bilden die SRA/Thatcham Versuche im Jahr 2006

How do car seats protect from whiplash injuries, results 2006

Car make and model	Group	Points
Volvo V50	Green	4
Volvo S80 model year 2007	Green	6
Saab 9-3	Green	10
Honda Civic	Green	13
Mazda 5	Green	13
Peugeot 307	Green	14
Ford Focus II	Green	16
Ford S-Max	Green	16
Opel Corsa	Green	16
Land Rover Discovery III	Green	17

Car make and model	Group	Points
Subaru Legacy	Yellow	21
Volkswagen Passat	Yellow	21
Renault Clio	Yellow	22
Toyota Prius	Yellow	24
Seat Altea	Yellow	24
Mercedes A-class	Yellow	25
Audi A6	Yellow	25
Volkswagen Golf	Yellow	25

Car make and model	Group	Points
Mercedes C-class	Red	26
Audi A4	Red	26
Fiat Grande Punto	Red	27
Lexus IS	Red	27
Nissan Almera	Red	29
Citroën C1	Red	30
Toyota Yaris	Red	30
Škoda Octavia	Red	31
Mercedes M-class	Red	31
BMW 3-series	Red	31
BMW 5-series	Red	32
Citroën C5	Red	32
Opel Astra	Red	32

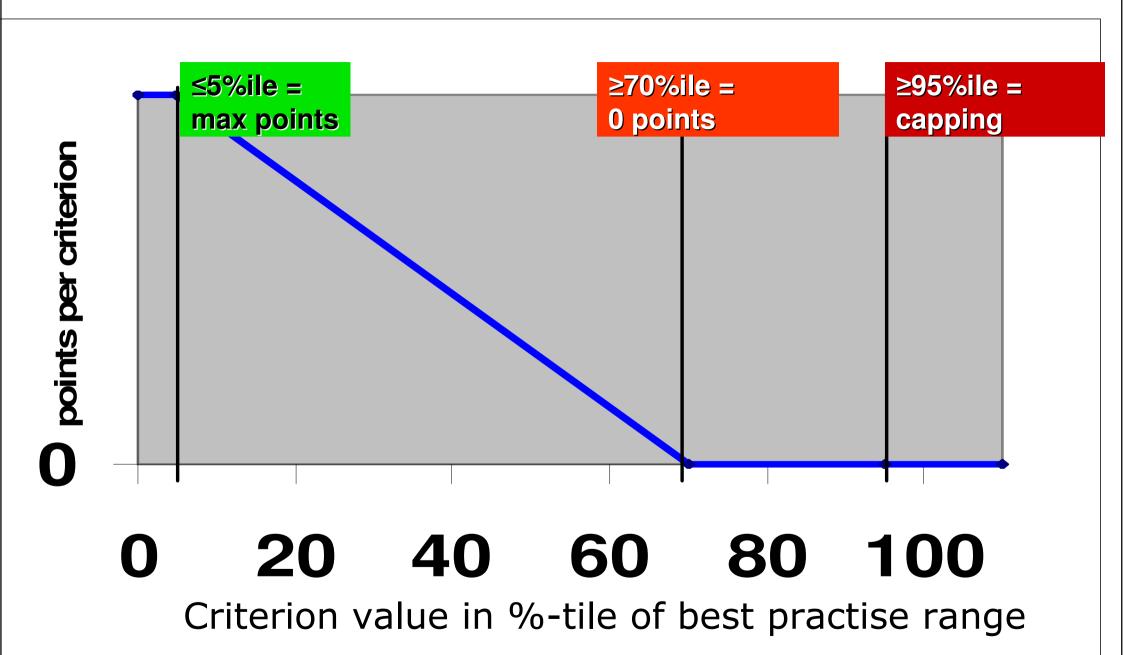
Group	Points		
	Min	Max	
Green	0	17	
Yellow	18	25	
Red	26	32	

- 30 Sitztypen
- 3 Tests

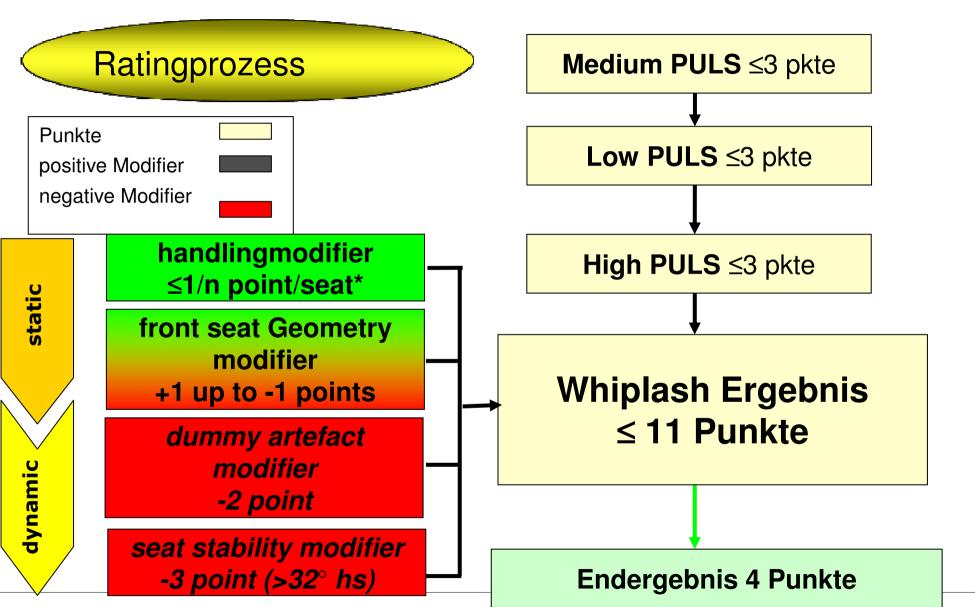
Volkswagen Fox

- 7 Kriterien
- Euro NCAP Testprozedere

32


Bewertungskriterien

SafetyWissen by carhs.	Low Severity Pulse			Medium Severity Pulse			High Severity Pulse		
	Higher performance	Lower performance	Capping Limit	Higher performance	Lower performance	Capping Limit	Higher performance	Lower performance	Capping Limit
NIC	9.00	15.00	18.30	11.00	24.00	27.00	13.00	23.00	25.50
Nkm	0.12	0.35	0.50	0.15	0.55	0.69	0.22	0.47	0.78
Rebound velocity (m/s)	3.0	4.4	4.7	3.2	4.8	5.2	4.1	5.5	6.0
Upper Neck Shear Fx (N)	30	110	187	30	190	290	30	210	364
Upper Neck Tension Fz (N)	270	610	734	360	750	900	470	770	1024
T1 acceleration* (g)	9.40	12.00	14.10	9.30	13.10	15.55	12.50	15.90	17.80
T-HRC (ms)	61	83	95	57	82	92	53	80	92


^{*} up to T-HRC (=Time to Head Restraint Contact / Zeit bis zum Kopfstützenkontakt)

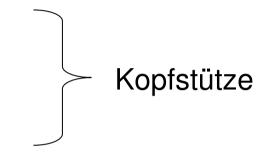
If the Higher Performance Limit is reached 0,5 Points per criterion are awarded. Between the Higher and Lower Performance Limit a sliding scale down to 0 Points is applied. Only the maximum score from either T1 acceleration or head restraint contact time (T-HRC) is used in the assessment. If any of NIC, Nkm, Head rebound velocity, neck shear or tension exceed the capping limit, no score is given for that pulse. Additionally, if both T1 and head restraint contact time exceed the lower performance limit and either one also exceeds the relevant capping limit, no score is given for the pulse.

Assessment

ADAC Kompatibilitäts-Crashtesgrametmynemore than 0 points, rating more than 4,5points after applying all modifiers

Inhalt

- Einleitung
- Testverfahren
- 3 Ergebnisse aus den Tests
- Rücksitzpassagiere
- 5 Unfallforschung und Zukunftsausblick


ADAC Kompatibilitäts-Crashtest, Volker Sandner

Ergebnisse: Euro NCAP Whiplash

Seit der Einführung des Whiplashverfahrens im Jahre 2008 wurden:

- 142 Sitzmodelle getestet
- 10 mit proaktiver (Daimler, BMW, Lancia, Fiat)
- 34 mit reaktiver
- 98 mit passiver (Volvo)

- 61 mit guter
- 67 mit mittelmäßiger
- 14 mit schlechter

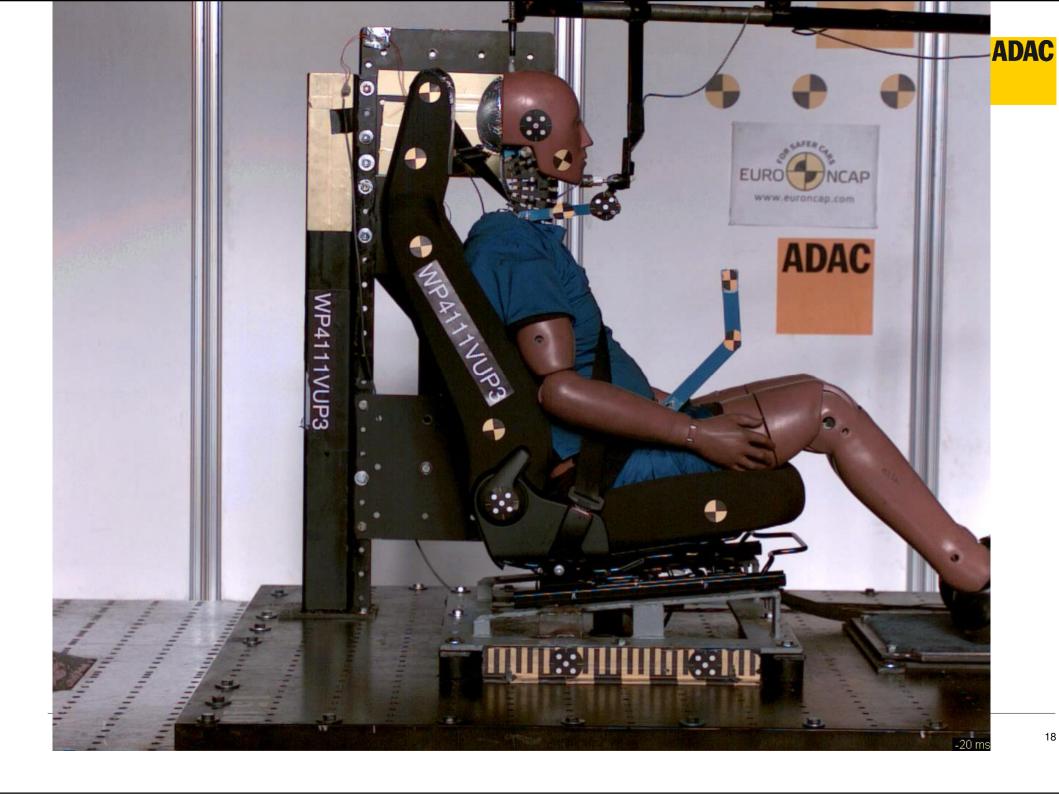
- 5 Fahrzeugsitze erzielten 0 Punkte in der Whiplashbewertung
- ab 2010 kein Fahrzeug mehr unter der 2 Punktegrenze
- schlecht schnitten Mazda CX-7 und Citroen Nemo ab, die Beide in 2010 nur 0 repektive 1,0 Punkte erreichten

Ergebnisse: Euro NCAP Whiplash

Seit der Einführung des Whiplashverfahrens im Jahre 2008 wurden:

61 Sitze mit 3 Punkten +x

davon


- 19 mit reaktiven System
- 2 mit aktiven System
- 40 mit passiven System
- kein aktives oder reaktives System für gute Bewertung von Nöten
- passive Systeme stellen 12 der 14 Topscorer 3,5-4,0 Punkte
- bestes Ergebnis in 2011 durch Geely Emgrand EC7 mit 3,7 Punkte, steht damit auf der Stufe von Ford C-Max (neu) und Opel Astra.

Ergebnisse: Euro NCAP Whiplash

Ergebnis aus der Analyse der Testresultate:

- Sowohl passive, als auch reaktive und proactive Systeme haben das Potential für eine sehr gute Sitzbewertung
- Innerhalb der einzelnen Syteme gibt es starke Abweichung in der Performance (passive, proactive)
- bei den mangelhaft bewerteten Sitzen (rot) finden sich nur passive Sitzsysteme wieder
- Verantwortlich für ein Rating Poor sind speziell hohe Hals-Zugkräfte, die T1 Beschleunigung und die Rebound Velocity
- auch Sitze von Kleinwagen erreichen eine gute Bewertung, Hyundai ix 20 und VW up! (3,4) wobei Hyundai mit einer reaktiven Kopfstütze und VW mit einer passiven fixen Kopfstütze ausgestattet sind

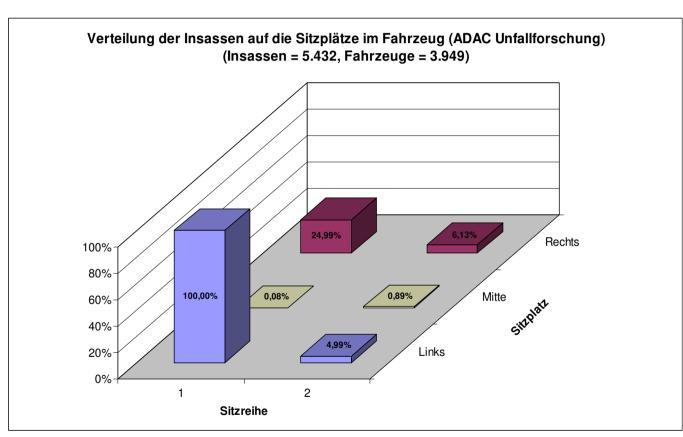
Inhalt

Testverfahren

Einleitung

Testverfahren

Ergebnisse aus den Tests


Rücksitzpassagiere

Unfallforschung und Zukunftsausblick

Verteilung der Pkw Insassen auf die Sitzplätze

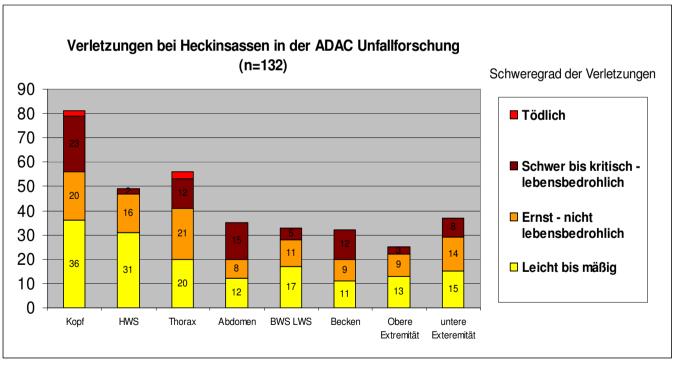
- 12% der registrierten Pkw Insassen saßen auf der hinteren Reihe
- durchschnittlich waren in den Fällen 1,4 Personen im Fahrzeug

© Dipl. -Ing. Thomas Unger

ADAC Kompatibilitäts-Crashtest, Volker Sandner

Verletzungsschwere je Sitzplatz

- Gut ein Drittel der Frontinsassen wurde schwer verletzt
- Jeder Fünfte Heckinsasse wurde schwer verletzt



Verletzungsmuster bei Pkw Heck - Insassen

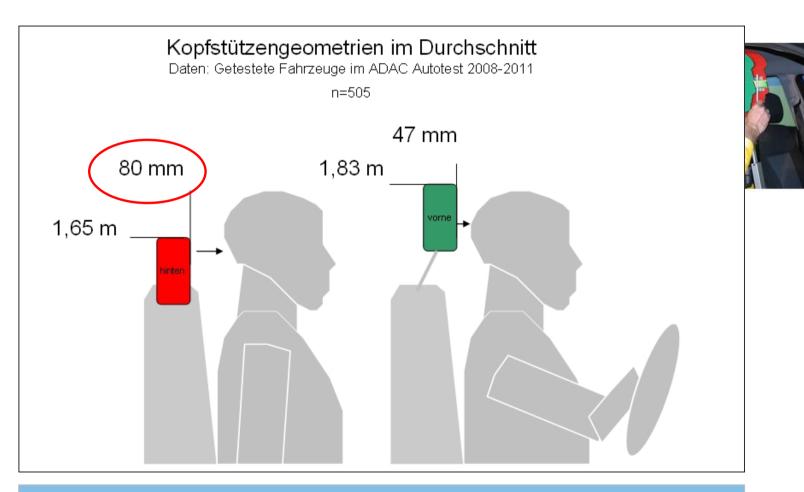
- Heckinsassen erleiden am Häufigsten Kopf, Brust und HWS - Verletzungen
- Schwere und schwerste Verletzungen treten auf bei:

55% der Kopfverletzungen65% der Brustverletzungen35% der HWS Verletzungen

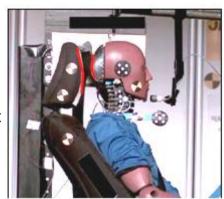
© Dipl. -Ing. Thomas Unger

Heckaufprall

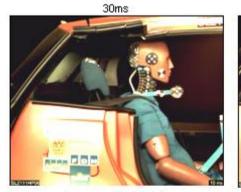
Beispiel Rückbank


- Kopfabstand zu groß (135mm)
- Höhe nicht fixierbar
- Dachkante niedrig
- Kopfüberstand zu hoch

Statische Vermessung der Kopfstützen im ADAC Autotest.


Kopfstützen Abstand hinten doppelt so hoch wie vorn

Heckaufprall

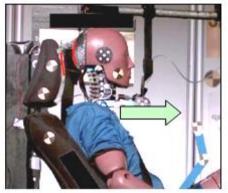


- Kinematik im Vergleich
- Crashpuls IIWPG Mid Severity 16 km/h

Vergleichbar ist dies mit einem Auffahrunfall, bei dem ein stehender moderner Pkw von einem Fahrzeug gleicher Art mit 32 km/h ins Heck getroffen wird

Ausgangssituation bei

Ausgangssituation bei 10ms

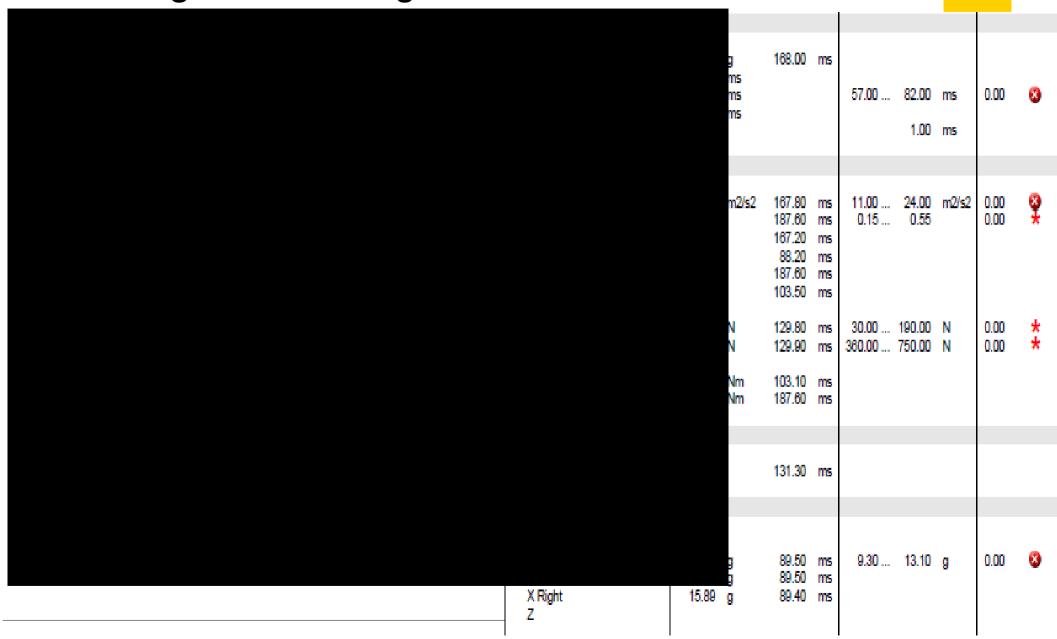

Guter Sitz

Max Rückwärtsbewegung bei 108 ms

Max Rückwärtsbewegung bei 138 ms

Rebound

164 ms



Kopfanprall am Dach beim Rebound 190 ms

Rückbank

ADAC Kompatibilitäts-Crashtest, Volker Sandner

26

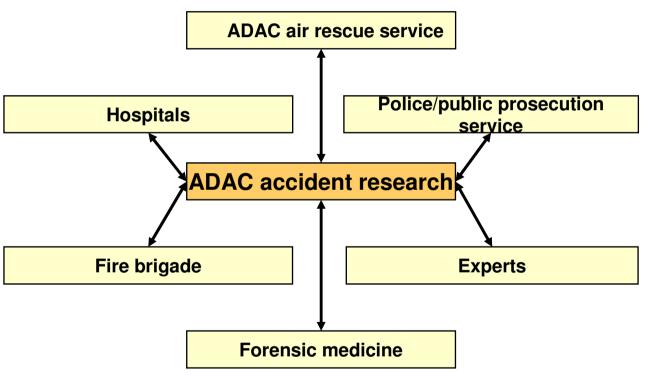
Heckaufprall

Medium Severity Pulse				
IIWPG 16 km/h Kopf	a.v."	uk		
T-HRC Kontaktzeit	grün	rot	capping	113 ms 🐧
	57 ms	82 ms	92 ms	
Rebound Velocity Oberer Nacken	3,2 m/s	4,8 m/s	5,2 m/s	2,73 m/s
TO SHOULT SHOULD	11	24	27	54,3 m²/s²
NIC max [m²/s²]			,	500 5000
Nkm max	0,15	0,55	0,69	0,61
Scherkraft Fx	30 N	190 N	290 N	283 N 🍳
Zugkraft Fz	360 N	750 N	900 N	873 N 🔸
Wirbelsäule				
T1 Beschleunigung	9,3 g	13,1 g	15,55 g	15,61 g 🠧
		ADEQ MARG WEAX POOR	UATE SINAL	San Am

- Geometrien auf den Rücksitzen häufig problematisch
- Gurtstraffer nur bei:

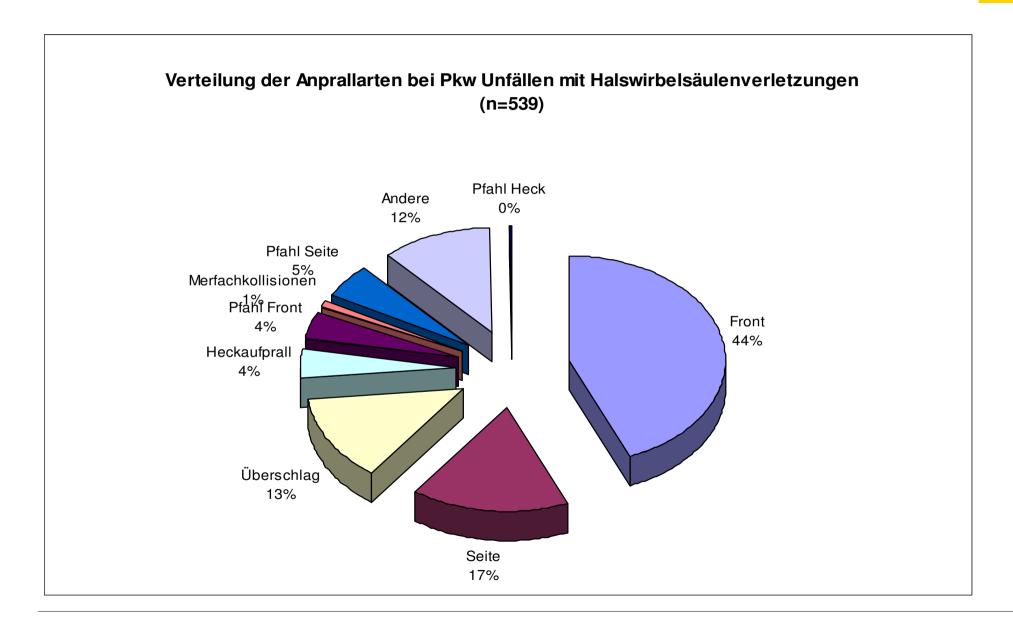
Mercedes und Volvo; bei VW optional

- Gurtkraftbegrenzer fehlen gänzlich bei: BMW, Opel, Ford etc.
- Durch Verbraucherschutzprogramme "Pfahlaufprall" gute Ausstattungsquote Kopfairbags.


Inhalt

- Einleitung
 - Testverfahren
 - 3 Ergebnisse aus den Tests
 - 4 Rücksitzpassagiere
 - 5 Unfallforschung und Zukunftsausblick

ADAC Kompatibilitäts-Crashtest, Volker Sandner


Datenquellen der ADAC Unfallforschung

Attributes of the ADAC accident research project:

- Independent, interdisciplinary study
- Collection of expert accident data (from police, doctors, fire brigades, motor vehicle experts)
- Data from serious accidents
- Highly accurate medical diagnoses
- Additional accident-related analyses possible
- Additional information from aerial photography

Erkenntnisse der ADAC Unfallforschung

Auf Grund der Beschränkung auf Ausserortsunfälle liegt die Zahl der "eigentlichen" HWS Distorsion bei weniger als 4%

Hohes Risiko von Nackenverletzungen

- Frontalaufprall mit Schleudern im weiteren Verlauf
- Seitenaufprall auf der dem Fahrer abgewandten Seite
- Überschlag
- Schleuderunfälle

side impact right, driver injured

injured injured

roll over, driver injured

in all 3 cases the passenger had isolated mid to high sever neck

backrest, driver

Erkenntnisse der Unfallforschung

- die hohe Rotationsgeschwindigkeit verursacht speziell bei Überschlägen und Schleudervorängen Verletzungen
- extreme seitliche Bewegung in Überschlag oder Seitenaufprallkonfigurationen verursahen ebenfalls Verletzungen

Lösungen für derartige Verletzungen:

- -Kopfairbags(Curtain und Mittelairbags)
- -Notbremssysteme nach einem Unfall
- -stabile Sitzstruktur

Ausblick

- Verbesserte Sitzkonstruktionen durch den Verbraucherschutz
- auch einfache und günstige Systeme bieten guten Schutz
- Stabilität der Sitzkonstruktion wichtig für höhere Geschwindigkeiten
- andere Unfallkonstellationen werden wichtiger
- Schutzsysteme um Kopfrotationen zu minimieren oder zu verhindern werden wichtiger
- Prävention besser als Nachsorge, daher vorantreiben der aktiven Fahrzeugsicherheit
- dem Rücksitzplatz wird mehr Betrachtung geschenkt werden

Vielen Dank für Ihre Aufmerksamkeit

